In what follows, we let $n > 1$ be a positive integer. The classical sum of divisors of $n$ is given by $\sigma_1(n)$. Denote the abundancy index of $n$ by $I(n)=\sigma_1(n)/n$.
Denote the deficiency of $n$ by $D(n)=2n-\sigma_1(n)$, and denote the sum of aliquot divisors of $n$ by $s(n)=\sigma_1(n)-n$.
CLAIM $$\frac{D(n^2)}{s(n^2)} < \frac{D(n)}{s(n)}$$
PROOF $$I(n) < I(n^2) \implies 2 - I(n^2) < 2 - I(n) \implies D(n^2) < nD(n) \implies \frac{D(n^2)}{n^2}<\frac{D(n)}{n}$$
$$I(n) < I(n^2) \implies I(n) - 1 < I(n^2) - 1 \implies ns(n) < s(n^2) \implies \frac{s(n)}{n} < \frac{s(n^2)}{n^2}$$
From the last two inequalities, we get $$\bigg(\frac{D(n^2)}{n^2}<\frac{D(n)}{n}\bigg) \land \bigg(\frac{n^2}{s(n^2)}<\frac{n}{s(n)}\bigg).$$
Multiplying LHS and RHS of the two inequalities, we finally obtain $$\frac{D(n^2)}{s(n^2)} < \frac{D(n)}{s(n)}.$$
Here are my questions:
Can the inequality in the CLAIM be improved? If so, how?