Consider two (Hermitian) matrices $A$ and $B$. Is there a nice expression for the following?
$$ \boxed{ \frac{\mathrm d}{\mathrm d x} \exp\left( A + x B \right)\big|_{x=0} = \; ? }$$
Of course, if $A$ and $B$ commute, this is simply $B \exp{(A)}$.
One thing I tried was the Suzuki-Trotter formula: \begin{align} \boxed{\frac{\mathrm d}{\mathrm d x} \exp\left( A + x B \right)\big|_{x=0}} &= \frac{\mathrm d}{\mathrm d x} \left. \left( \lim_{N \to \infty} \left[ \exp\left( \frac{A}{N} \right) \exp \left( x \frac{B}{N} \right) \right]^N \right) \right|_{x=0} \\ &= \lim_{N\to \infty} \sum_{n=1}^N \exp\left( \frac{n}{N} A \right) \frac{B}{N} \exp\left( \frac{N-n}{N} A \right) \\ &= \left( \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N e^{\frac{n}{N}A }B\; e^{-\frac{n}{N}A } \right) e^A \\\ &= \boxed{ \int_0^1 e^{t A} B \;e^{(1-t)A} \; \mathrm d t } \; . \end{align} Is this as close as it gets to a closed form?
One thing we can do is go to the eigenbasis of $A$, such that we can explicitly perform the integration over $t$. If we index the eigenvectors of $A$ by $i$, with corresponding eigenvalues $\lambda_i$, then we can express the answer in this basis: \begin{equation} \boxed{ \left( \frac{\mathrm d}{\mathrm d x} \exp\left( A + x B \right)\big|_{x=0} \right)_{ij} = \frac{e^{\lambda_i}-e^{\lambda_j}}{\lambda_i-\lambda_j} B_{ij}} \;, \end{equation} where $(\cdot)_{ij}$ are the entries of a matrix in the eigenbasis of $A$. (Note that if $\lambda_i = \lambda_j$, we replace $\frac{e^{\lambda_i}-e^{\lambda_j}}{\lambda_i-\lambda_j} \to e^{\lambda_i}$, which is also consistent with l'Hopital's rule.)