For the given parameter $\mathbb R\ni t\geq 1$, the sequence is defined recursively: $$a_1=t,\;\;a_{n+1}a_n=3a_n-2$$ $(a)$ Let $t=4$. Prove the sequence $(a_n)$ converges and find its limit.
$(b)$ Which parameters $t\geq 1$ is the sequence $(a_n)$ increasing for?
My attempt:
Bolzano-Weierstrass:A sequence converges if it is monotonous and bounded
$$a_{n+1}a_n=3a_n-2\implies a_{n+1}=3-\frac{2}{a_n}$$ $(a)$
First few terms: $a_1=4,a_2=\frac{5}{2},a_3=\frac{11}{5}$
Assumption: the sequence is decreasing
Proof by induction: the basis (n=1) is trivial: $\frac{5}{2}<4$
Assumption: $a_n<a_{n-1},\;\forall n\in\mathbb N$
Step: $$a_n<a_{n-1}\implies\frac{1}{a_n}\geq\frac{1}{a_{n-1}}\Bigg/\cdot(-2)$$ $$\iff-\frac{2}{a_n}\leq-\frac{2}{a_{n-1}}\iff \underbrace{3-\frac{2}{a_n}}_{a_{n+1}}\leq\underbrace{3-\frac{2}{a_{n-1}}}_{a_n}$$ The limit: $$L=3-\frac{2}{L}\implies L^2-3L+2=0$$ I take into account only $2$ because the parabola is convex and $$a_n\to L^-.$$ Then I have to prove: $a_n\geq 2\;\forall n\in\mathbb N$ after the formal computing: $a_{n+1}\geq 3-\frac{2}{2}=2$ $\underset{\implies}{\text{Bolzano-Weierstrass theorem}}(a_n)\to 2$
$(b)$ Since the sequence doesn't have to be convergent, only increasing: $$a_2=3-\frac{2}{t}\geq t\implies t\in[1,2]$$ Then, it should follow inductively,analogously to $(a)$, this time it is increasing. Is this correct?