$$ \begin{align} a = {7 \choose 0}+{7 \choose 3}+{7 \choose 6}\\ b = {7 \choose 1}+{7 \choose 4}+{7 \choose 7}\\ c = {7 \choose 2}+{7 \choose 5} \end{align} $$ then $a^3+b^3+c^3-3abc$ is equal to _____.
I tried to write $a^3+b^3+c^3-3abc$ in terms of $a+b+c$ and failed.
$$
\begin{align}
a^3+b^3+c^3-3abc & = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)\\
& = (2^7)((a+b+c)^2-3(ab+bc+ca))\\
& = (2^7)((2^7)^2-3(ab+bc+ca))
\end{align}
$$
I think the expression should be written in terms of another binomial series which I can not think of.