Actually Eisenstein is quick and easy here since the required shift is obvious as I explain below. The remark shows how this is a special case of general method to discover such Eisenstein shifts.
Hint $ $ for $(2)\!:\, \bmod\color{#c00}2\!:\ f(x) \equiv x^{ 4}\!+\!1\equiv (x\!+\!1)^{4} \ $ is a $\rm\color{#0a0}{prime\ power}$.
So Eisenstein works on $\,g(x) = f(x\!-\!1) \equiv x^4\ $ by
$\,\color{#c00}2^2\!\nmid\! g(0)\! =\! f(-1)\equiv 1\!+\!9\equiv 2\pmod{\!\color{#c00}2^2}$
Remark $\ $ Recall that the key idea behind the Eisenstein criteria is that polynomials satisfying the criterion are $\rm\color{#0a0}{prime\ powers\ (\equiv x^n)} \bmod p,\,$ and products of primes always factor uniquely. The same works for its shift $\,(x-c)^n,\,$ so we seek primes $\,p\,$ such that, mod $\,p,\,$ the polynomial is congruent to such a power (e.g. for motivation: cyclotomic case). The only primes $\,p\,$ that can yield such powers are those dividing the discriminant (here by Alpha = $\,\color{#c00}2^9\cdot 3\cdot 5^2)$. Indeed, if $\,f\equiv a (x-c)^n,\,\ n> 1\,$ then $\,f\,$ and $\,f'\,$ have a common root $\,x\equiv c,\,$ hence their resultant $\, R(f,f')\equiv 0.\,$ But this is, up to sign, the discriminant of $\,f\,$ (presumed monic).
Below is a less trivial example, from this deleted question.
$ f(x)= x^4\!+\!123\:\!x^3\!-\!653\:\!x^2\!-\!386\:\!x+684\,$ $\Rightarrow\, f(x\!-\!c)= x^4\!+(123\!-\!4c)\:\!x^3+\,\cdots$
so $\,p\mid 123\!-\!4c\,\Rightarrow\:\!\bmod p\!:\ 4c\equiv 123,\,$ so $\,\color{#0af}{4(x\!-\!c)\equiv X\!-\!123},\,\ X = 4x,\,$ so
$g(X) := 4^4f(\color{#0af}{x\!-\!c}) = 4^4 f(\color{#0af}{\frac{X-123}4}) \equiv X^4 -\color{#c00}i\:\! X^2 + \color{#c00}j\:\! X - \color{#c00}k,\,$ $\ \scriptsize\begin{align}\color{#c00}i &= 101222\\ \color{#c00}j&=17432440\\ \color{#c00}k&=841514019\end{align}$
thus we infer $\,g(X)\equiv\color{#0a0}{X^4}\!\!\iff\! \gcd(\color{#c00}{i,j,k})\!=\!\color{#c00}{107}\equiv 0,\,$ so $\,4c\!\equiv\! 123\!\equiv \!16\!\iff\! \color{darkorange}{c\!\equiv\! 4}$
and indeed $f(x\!-\!\color{darkorange}4) = \color{#0a0}{x^4} + \color{#c00}{107}(x^3\!-\!19\:\!x^2\!+\!98\:\!x\!-\!148)\,$ is Eisenstein at $\,\color{#c00}{p=107}$.