Perform the transformation:
\begin{align*}
\left\{
\begin{split}
x(s)&=4\cdot\tfrac{(1+s^{7})^{1/7}+s(1+s^{7})^{5/7}-s^{5}}{s^{2}(1+s^{7})^{2/7}}-4\\
y(s)&=4+12\cdot\tfrac{(1+s^{7})^{1/7}+s(1+s^{7})^{5/7}-s^{5}}{s^{2}(1+s^{7})^{2/7}}+8\cdot\tfrac{(1+s^{7})^{5/7}-s^{4}-s^{5}(1+s^{7})^{4/7}}{s^{3}(1+s^{7})^{3/7}}\\
\end{split}\right.
\end{align*}
After extensive algebraic simplification, we obtain:
\begin{align*}
\left|\dfrac{{\mathrm{d}}x}{y}\right|&=\dfrac{{\mathrm{d}}x}{\sqrt{x(x^2+21x+112)}}\\
&=\dfrac{(1+s^{7})^{3/7}+s^{3}(1+s^{7})^{1/7}-s}{(1+s^{7})^{6/7}}{\mathrm{d}}s\qquad(s>0)
\end{align*}
Note that $x(s)$ is a 2-covering from the positive real numbers to the interval $[0, +\infty)$, and it attains its minimum value of 0 at some point $\alpha$ on the positive real line. Therefore:
\begin{align*}
I_{s}&=\int_{0}^{+\infty}\frac{(1+s^{7})^{3/7}+s^{3}(1+s^{7})^{1/7}-s}{(1+s^{7})^{6/7}}{\mathrm{d}}s\\
&=
\int_{0}^{\alpha}\frac{(1+s^{7})^{3/7}+s^{3}(1+s^{7})^{1/7}-s}{(1+s^{7})^{6/7}}{\mathrm{d}}s\\
&\qquad+\int_{\alpha}^{+\infty}\frac{(1+s^{7})^{3/7}+s^{3}(1+s^{7})^{1/7}-s}{(1+s^{7})^{6/7}}{\mathrm{d}}s
\end{align*}
$$=2\int_{0}^{+\infty}\frac{{\mathrm{d}}x}{\sqrt{x(x^{2}+21x+112)}}$$
The integral $I_s$ can be evaluated using the Euler integral formula, yielding an expression involving the Gamma function.
\begin{aligned}
\int_{0}^{\infty} \frac{x^{n}}{\left(1+x^{m}\right)^{\alpha}} &=\frac{1}{m} \int_{0}^{1} y^{\left(\alpha-\frac{n+1}{m}\right)-1}(1-y)^{\frac{n+1}{m}-1} d y \\
&=\frac{1}{m} B\left(\alpha-\frac{n+1}{m}, \frac{n+1}{m}\right) \\
&=\frac{1}{m} \frac{\Gamma\left(\alpha-\frac{n+1}{m}\right) \Gamma\left(\frac{n+1}{m}\right)}{\Gamma(\alpha)}
\end{aligned}
The parameterization of the elliptic curve $E: y^2 = x(x^2 + 21x + 112)$ using the Fermat septic $\lambda^7 + \mu^7 + \nu^7 = 0$ can be achieved through a series of transformations and mappings, as described in Gilles Lachaud's paper Ramanujan Modular Forms and the Klein Quartic (link).
1. Klein Quartic and the Elliptic Curve $E_1$
The paper provides a mapping from the Klein quartic $U^3V + V^3W + W^3U = 0$ to an elliptic curve $E_1$ with complex multiplication by $\mathbb{Z}[\sqrt{-7}]$. The elliptic curve $E_1$ is given by:
$$
Y^2 + 3XY + Y = X^3 - 2X - 3.
$$
This elliptic curve $E_1$ is isomorphic to the given elliptic curve $E: y^2 = x(x^2 + 21x + 112)$.
2. Mapping from Fermat Septic to Klein Quartic
The Fermat septic is defined by $\lambda^7 + \mu^7 + \nu^7 = 0$. There exists a rational map from the Fermat septic to the Klein quartic:
$$
(U, V, W) = (\lambda^3 \nu, \lambda \mu^3, \mu \nu^3).
$$
In affine form, this map can be written as:
$$
(U, V, W) = \left( -\frac{\lambda^3}{\mu \nu^2}, -\frac{\lambda \mu^2}{\nu^3}, -1 \right).
$$
3. Irrational Parametrization
To simplify the parameterization, we use the following irrational parametrization:
\begin{align*}
\left\{
\begin{split}
\lambda &= (1 + s^7)^{1/7}, \\
\mu &= -s, \\
\nu &= -1.
\end{split}
\right.
\end{align*}
Substituting these into the affine map, we obtain:
\begin{align*}
\left\{
\begin{split}
U &= \tfrac{(1 + s^7)^{3/7}}{s}, \\
V &= {\scriptsize{s}^2 (1 + s^7)^{1/7}}, \\
W &= -1.
\end{split}
\right.
\end{align*}
4. Mapping from Klein Quartic to $E_1$
The paper provides explicit formulas for $X$ and $Y$ in terms of $U, V, W$:
\begin{align*}
\left\{
\begin{split}
X &= -\left(\tfrac{V}{U} + \tfrac{U}{W} + \tfrac{W}{V} \right), \\
Y &= \tfrac{U}{V} + \tfrac{W}{U} + \tfrac{V}{W}.
\end{split}
\right.
\end{align*}
Substituting the expressions for $U, V, W$ from the irrational parametrization, we obtain:
\begin{align*}
\left\{
\begin{split}
X&=\tfrac{(1+s^{7})^{1/7}+s(1+s^{7})^{5/7}-s^{5}}{s^{2}(1+s^{7})^{2/7}},\\
Y&=\tfrac{(1+s^{7})^{5/7}-s^{4}-s^{5}(1+s^{7})^{4/7}}{s^{3}(1+s^{7})^{3/7}}.
\end{split}
\right.
\end{align*}
5. Isomorphism Between $E_1$ and $E$
The elliptic curves $E_1$ and $E$ are isomorphic, with the following explicit maps:
\begin{cases}
E_1 \to E: & (X, Y) \mapsto (x, y) = (4(X - 1), 4(1 + 3X + 2Y)), \\
E \to E_1: & (x, y) \mapsto (X, Y) = \left( \frac{1}{4}(x - 3), \frac{1}{8}(5 - 3x + y) \right).
\end{cases}
6. Final Parameterization of $E$
Combining the above transformations, we obtain the parameterization of $E$ in terms of $s$:
\begin{align*}
\left\{
\begin{split}
x&=4(X-1), \\
y&=4(1+3X+2Y), \\
X&=\tfrac{(1+s^{7})^{1/7}+s(1+s^{7})^{5/7}-s^{5}}{s^{2}(1+s^{7})^{2/7}},\\
Y&=\tfrac{(1+s^{7})^{5/7}-s^{4}-s^{5}(1+s^{7})^{4/7}}{s^{3}(1+s^{7})^{3/7}}.
\end{split}
\right.
\end{align*}
Y^2 + 3*X*Y + Y - X^3 + 2*X + 3 /. {X -> -(U/W + V/U + W/V),
Y -> U/V + V/W + W/U} /. {U -> (1 + s^7)^(3/7)/s,
V -> s^2 (1 + s^7)^(1/7), W -> -1} // Factor
y^2 - x*(x^2 + 21*x + 112) /. {x -> (X - r)/u^2,
y -> (Y - s (X - r) - t)/u^3} /.
Thread[{u, r, s, t} -> {1/2, 1, -3/2, -2}] // Factor