I need to show that the following function is not Riemann Integrable on $[0,1]$,
$f(x) = \begin{cases} x & x\in \mathbb{Q} \\ \ 0 & x\in\mathbb{R}\backslash \mathbb{Q} \end{cases}$
My solution is:
Assume $f$ is Riemmann integrrable. Thus by Darboux's Criterion, given an $\epsilon \gt 0$ there exists a partition $P = \{x_{0},...,x_{n}\}$ of $[0,1]$ such that
$U(f,P) - L(f,P) \lt \epsilon \\ \iff \sum_{i=0}^{n}M_{i}(x_{i}-x_{i-1}) - 0 \lt \epsilon \\$
Now,
$M_{n}(x_{n} - x_{n-1}) \lt \sum_{i=0}^{n}M_{i}(x_{i}-x_{i-1})$ , since the interval has only positive values.
Thus,
$M_{n}(x_{n} - x_{n-1}) \lt \epsilon$
but, $M_{n} = x_{n} = 1$,
So,
$1 \lt \epsilon + x_{n-1}$
Am I on the right track, because I'm not sure where to got from here?