So you can check your solutions.
We get $a_2=\frac{20}{11}$ and $a_3=\frac{31}{16}$.
For II):
It is $a_{n+1}-2=\frac{4(1+a_n)}{4+a_n}-2=\frac{4+4a_n-8-2a_n}{4+a_n}=\frac{2a_n-4}{4+a_n}=\frac{2(a_n-2)}{4+a_n}$
For III):
It is $a_{n+1}=\frac{4(1+a_n)}{4+a_n}\stackrel{a_n<2}{<}\frac{4(1+2)}{4+a_n}=\frac{12}{4+a_n}\stackrel{a_n<2}{<}\frac{12}{4+2}=2$. Hence $a_{n+1}<2$.
Finally:
We show, that $a_{n+1}-a_n>0$
We have $\frac{4(1+a_n)}{1+a_n}-a_n=\frac{4(1+a_n)-a_n(1+a_n)}{1+a_n}=\frac{4-a_n^2}{4+a_n}=\frac{(2+a_n)(2-a_n)}{1+a_n}>0$
Because $2+a_n>0$ and $1+a_n>0$ since $a_n>0$ (sequence of positiv numbers)
Also $2-a_n>0\Leftrightarrow 2>a_n$ which is true.
Every factor greater than zero means the product is greater than zero.