I'm trying to show that $$\sum_{n=1}^\infty \left(\frac{1}{n!}\right)\left(\frac{n}{e}\right)^n$$ diverges by the Corollary of Raabe's Test.
Corollary of Raabe's Test: Let $X=\{x_n\}$ be a sequence of nonzero real numbers and let $a=\lim_{n \to \infty} (n(1-\frac{|x_n+1|}{x_n}))$, whenever this limit exists. Then the series is absolutely convergent when $a>1$ and is divergent when $a<1$.
What I find:
$$a= \lim_{n \to \infty} (n(1-\frac{1}{e}(1+\frac{1}{n})^n))=\infty \cdot 0$$ (which is indeterminate)
$$\lim_{n \to \infty} (n(1-\frac{1}{e}(1+\frac{1}{n})^n))=\lim_{n \to \infty} \frac{1-\frac{1}{e}(1+\frac{1}{n})^n)}{\frac{1}{n}}$$
Applying L'hospital's rule, I get: $$\lim_{n \to \infty} \frac{-\frac{n}{e}(1+\frac{1}{n})^{n-1}(-\frac{1}{n^2})}{-\frac{1}{n^2}}=\lim_{n \to \infty} (-\frac{n}{e}(1+\frac{1}{n})^{n-1})$$
Help!!! I do not know what to do next.