Let
- $(\Omega,\mathcal A,\operatorname P)$ be a probability space
- $(\mathcal F_t)_{t\ge0}$ be a filtration on $(\Omega,\mathcal A)$
- $M$ be a continuous local $\mathcal F$-martingale on $(\Omega,\mathcal A,\operatorname P)$
If $M$ is $L^2$-bounded, i.e. $$\sup_{t\ge0}\left\|M_t\right\|_{L^2(\operatorname P)}<\infty\tag1\;,$$ are we able to show that $M$ is an $\mathcal F$-martingale?
Let $(\tau_n)_{n\in\mathbb N}$ be an $\mathcal F$-localizing sequence for $M$. By definition, $$M_s^{\tau_n}=\operatorname E\left[M_t^{\tau_n}\mid\mathcal F_s\right]\;\;\;\text{for all }t\ge s\ge0\tag2$$ for all $n\in\mathbb N$. Since $M$ is continuous and $\tau_n\xrightarrow{n\to\infty}\infty$ almost surely, $$M_s^{\tau_n}\xrightarrow{n\to\infty}M_s\;\;\;\text{almost surely}\tag3$$ for all $s\ge0$. So, the desired result would follow, if we would be able to apply the dominated convergence theorem for the conditional expectation. However, I don't find an uniform integrable bound for the $M^{\tau_n}$.