Mobius transformations take circles to circles. So the transformation $T$ such that $T(D) =D$ takes the unit circle $\tau$ to another circle $\tau'$. Since $T$ maintains orientation, $T$ maps $D$ to either inside or outside of $\tau'$. Since $T(D) = D$, it follows that $T$ must map $D$ to inside of $\tau'$. It follows that $\tau' = \tau$.
Following @H.H.Rugh 's idea, by equating $|\frac{az+b}{cz+d}|=1$ we obtain
$$
|a|^2 + |b|^2 = |c|^2 + |d|^2 \tag{1} \label{eq1}
$$
$$
a\bar{b} = c\bar{d} \tag{2} \label{eq2}
$$
assuming $c = 0$ we have
$$ab = 0 \land bc = 0 \tag{3} \label{eq3}$$
$$|a|^2 = |d|^2 \tag{4} \label{eq4}$$
Since $ad -bc \neq 0 \land bc = 0$, we have $ad \neq 0$
Therefore $a \neq 0 \land d \neq 0$. We get
$$T(z) = \frac{az}{d}$$
Since $|a| = |d|$, we get
$$T(z) = \lambda z$$
wher $|\lambda| = 1$
Suppose $c \neq 0$. Then we have
$$\bar{d} = \frac{a\bar{b}}{c} \tag{5} \label{eq5}$$
$$
\implies |d|^2 = \frac{|a|^2|b|^2}{|c|^2} \tag{6} \label{eq6}$$
Substitute $\eqref{eq6}$ in $\eqref{eq1}$ and obtain after multiplying both sides by $|c|^2$ and gathering common terms
$$(|a|^2 - |c|^2)(|b|^2 - |c|^2) = 0$$
Suppose $|a| = |c|$. Substituting $\eqref{eq5}$, we get
$$T(z) = \frac{az+b}{cz+\frac{\bar{a}b}{\bar{c}}}= \frac{a\bar{c}z + b\bar{c}}{|c|^2z+\bar{a}b}$$
Let $c = e^{i\theta}a, \theta \in \mathbb{R}$. Then
$$T(z) = \frac{|a|^2 e^{-i\theta}z + \bar{a}b e^{-i\theta}}{|a|^2z+\bar{a}b}
= e^{-i\theta}\frac{|a|^2 z + \bar{a}b}{|a|^2z+\bar{a}b}
= e^{-i\theta}$$
In this case T is not a mobius transformation. Therefore we must necessarily have $|b| = |c|$. Let $c = be^{i\theta}, \theta \in \mathbb{R}$. Then
$$
T(z) = \frac{a\bar{b}e^{-i\theta}z + |b|^2e^{-i\theta}}{|b|^2z + \bar{a}b}
$$
$$
= e^{-i\theta}\frac{a\bar{b}z + |b|^2}{|b|^2z + \bar{a}b}
$$
$$
=e^{-i\theta}\frac{\bar{b}}{b}\frac{az + b}{\bar{b}z + \bar{a}}
$$
$$
= \lambda \frac{az + b}{\bar{b}z + \bar{a}} \tag7 \label{eq7}
$$
where $|\lambda| = 1$. Suppose $z_1 = T(1), z_2 = T(i), z_3 = T(-1)$. By orientation principle, the direction $z_1 \rightarrow z_2 \rightarrow z_3$ should also be clockwise. This means $Im (\frac{z_3 - z_2}{z_2 - z_1}) > 0$.
Evaluating each $z_i$ for $i \in \{1,2,3\}$
$$
z_1 = \lambda\frac{a+b}{\bar{a}+\bar{b}} \tag8 \label{eq8}
$$
$$
z_2 = \lambda\frac{ai+b}{\bar{a}+\bar{b}i} \tag9 \label{eq9}
$$
$$
z_3 = \lambda\frac{a-b}{\bar{b}-\bar{a}} \tag{10}\label{eq10}
$$
Using $\eqref{eq8}$, $\eqref{eq9}$ and $\eqref{eq10}$, we get
$$
\frac{z_3 - z_2}{z_2 - z_1}
= \frac{i+1}{i-1}\frac{\bar{a}+\bar{b}}{\bar{b}-\bar{a}}
$$
$$=\sqrt{2}\frac{[i(a\bar{b} -\bar{a}b)
+ i (|a|^2 - |b|^2)]}
{|b - a|^2} \tag{11} \label{eq11}$$
So $Im (\frac{z_3 - z_2}{z_2 - z_1}) > 0$ implies $|a| > |b|$. It means $a \neq 0$. Let $ b = -\alpha a$, where $|\alpha| < 1$. Substituting in $\eqref{eq7}$ we get
$$
T(z) = \lambda\frac{az-\alpha a}
{-\bar{\alpha}\bar{a}z + \bar{a}}
$$
$$
=\lambda\frac{a}{-\bar{a}}\frac{z-\alpha}
{\bar{\alpha}z - 1}
$$
Therefore
$$
T(z) = e^{i\theta}\frac{z-\alpha}{\bar{\alpha}z - 1},
|\alpha| < 1, \theta \in \mathbb{R}
$$