Let
- $T\ge 0$
- $d\in\mathbb N$
- $\Omega\subseteq\mathbb R^d$ be open and $\Lambda\subseteq\mathbb R^d$ be bounded and open with $\overline\Lambda\subseteq\Omega$
- $u\in C^{1,\:2}([0,T]\times\Omega,\mathbb R^d)$ and $$\tilde u(t):=u(t,\;\cdot\;)\;\;\;\text{for }t\in[0,T]$$
Suppose that $$\left.\tilde u(t)\right|_{\partial\Lambda}=0\;\;\;\text{for all }t\in[0,T]\;.\tag 1$$
How can we show that $$\tilde u(t)\in H_0^1(\Lambda,\mathbb R^d)\;\;\;\text{for all }t\in[0,T]\tag 2$$ and that $$[0,T]\to H_0^1(\Lambda,\mathbb R^d)\;,\;\;\;t\mapsto\tilde u(t)\tag 3$$ is continuous?
I've tried the following for the continuity of $(3)$: Let $(t_n)_{n\in\mathbb N}\subseteq[0,T]$ with $$|t_n-t|\:\xrightarrow{n\to\infty}\:0\tag 4$$ for some $t\in[0,T]$, $$v_n:=\left|\tilde u(t_n)\right|^2\;\;\;\text{for }n\in\mathbb N$$ and $v:=\left|\tilde u(t)\right|^2$. By $(2)$, $$v_n\in L^1(\Lambda,\mathbb R^d)\;\;\;\text{for all }n\in\mathbb N\;.\tag 5$$ Moreover, $$|v_n(x)-v(x)|\:\xrightarrow{n\to\infty}\:0\;\;\;\text{for all }x\in\Lambda\;,\tag 6$$ since $u$ is continuous in the first variable. Since $u$ is continuous in the second variable and $\overline\Lambda$ is compact, $$|v(x)|\le M\;\;\;\text{for all }x\in\Lambda\tag 7$$ for some $M\ge 0$. Let $\varepsilon>0$. By $(4)$ and $(6)$, $$|v_n(x)-v(x)|<\varepsilon\;\;\;\text{for all }n\ge N\tag 8$$ for some $N\in\mathbb N$. Thus, $$|v_n(x)|<M+\varepsilon\;\;\;\text{for all }n\ge N\tag 9$$ by combination of $(7)$ and $(8)$. Thus, we can apply Lebesgue's dominated convergence theorem and conclude that $$\left\|v_n-v\right\|_{L^1(\Lambda,\mathbb R^d)}\:\xrightarrow{n\to\infty}\:0\;.\tag{10}$$ If I'm not terribly wrong, we can apply the same argumentation to $$w_n:=\left|\nabla\tilde u(t_n)\right|^2\;\;\;\text{for }n\in\mathbb N$$ and $w:=\left|\nabla\tilde u(t)\right|^2$ in order to finally obtain the continuity of $(3)$.
Any doubts? And in either case: How can we show $(2)$. It seems to be obvious by $(1)$, but how do we need to argue in detail?