Exercise 1.2.3.29 in Donald Knuth's The Art of Computer Programming (3e) states the following property of a multi-indexed sum:
$$ \sum_{i=0}^n \sum_{j=0}^i \sum_{k=0}^j a_ia_ja_k = \frac{1}{3}S_3 + \frac{1}{2}S_1S_2 + \frac{1}{6}S_1^3, $$
where $S_r = \sum_{i=0}^n a_i^r$.
I tried to prove it and failed. What I found are the following identities:
$$ \sum_{i=0}^n \sum_{j=0}^i \sum_{k=0}^j a_ia_ja_k = \frac{1}{2} \sum_{i=0}^n a_i \left( \left( \sum_{j=0}^i a_j \right)^2 + \sum_{j=0}^i a_j^2 \right), $$
$$ S_1S_2 = \sum_{i=0}^n \sum_{j=0}^n a_i a_j^2, $$
$$ S_1^3 = \sum_{i=0}^n \sum_{j=0}^n \sum_{k=0}^n a_i a_j a_k. $$
Can anybody help in completing the proof?
Based on grand_chat's answer, the identity can be proven inductively.
$$ \begin{align} \sum_{i=0}^{n+1} \sum_{j=0}^i \sum_{k=0}^j a_ia_ja_k & = \sum_{i=0}^n \sum_{j=0}^i \sum_{k=0}^j a_ia_ja_k + a_{n+1} \sum_{i=0}^{n+1} \sum_{j=0}^i a_ia_j \\ & \stackrel{hyp}{=} \underbrace{\frac{1}{3}S_{n,3} + \frac{1}{2}S_{n,1}S_{n,2} + \frac{1}{6}S_{n,1}^3}_{=:S_n} + \frac{1}{2} a_{n+1} \left( \left( \sum_{i=0}^{n+1} a_i \right)^2 + \sum_{i=0}^{n+1} a_i^2 \right) \\ & = S_n + \frac{1}{2} a_{n+1} \left( \left( \sum_{i=0}^n a_i + a_{n+1} \right)^2 + \sum_{i=0}^n a_i^2 + a_{n+1}^2 \right) \\ & = S_n + \frac{1}{2} a_{n+1} \left( \left( \sum_{i=0}^n a_i \right)^2 + 2 \sum_{i=0}^n a_i a_{n+1} + a_{n+1}^2 + \sum_{i=0}^n a_i^2 + a_{n+1}^2 \right) \\ & = S_n + a_{n+1}^3 + \sum_{i=0}^n a_i a_{n+1}^2 + \frac{1}{2} \left( \sum_{i=0}^n a_i \right)^2 a_{n+1} + \frac{1}{2} \sum_{i=0}^n a_i^2 a_{n+1} \\ & = S_n + a_{n+1}^3 \left( \frac{1}{3} + \frac{1}{2} + \frac{1}{6} \right) + \sum_{i=0}^n a_i a_{n+1}^2 \left( \frac{1}{2} + \frac{3}{6} \right) + \frac{3}{6} \left( \sum_{i=0}^n a_i \right)^2 a_{n+1} + \frac{1}{2} \sum_{i=0}^n a_i^2 a_{n+1} \\ & = \frac{1}{3} \left( S_{n,3} + a_{n+1}^3 \right) + \frac{1}{2} \left( S_{n,1}S_{n,2} + \sum_{i=0}^n a_i a_{n+1}^2 + \sum_{i=0}^n a_i^2 a_{n+1} + a_{n+1}^3 \right) + \frac{1}{6} \left( S_{n,1}^3 + 3 \left( \sum_{i=0}^n a_i \right)^2 a_{n+1} + 3 \sum_{i=0}^n a_i a_{n+1}^2 + a_{n+1}^3 \right) \\ & = \frac{1}{3}S_{n+1,3} + \frac{1}{2}S_{n+1,1}S_{n+1,2} + \frac{1}{6}S_{n+1,1}^3. \end{align} $$
The problem here is that the hypothesis is taken from thin air.