December 2021
Page 929 in Brillhart 2009 does not use letters $n,o,p,q$ so I can display the general product thing: $$ no = pq $$ in positive integers.
Define $r = \gcd(n,p) .$ This gives us $$ n=rs, \; \; p=rt , \; \; \gcd(s,t) = 1 $$
Next $rso= rtq$ and $so=tq.$ Because $s,t$ are coprime, we know $t|o.$ We define $o=tu.$ Then $so=tq$ takes us to $stu = tq$ and then $su = q.$ Again, because $s,t$ are coprime, we see $\gcd(o,q) = \gcd(tu, su) = u \; . \; \; $
All together, $no=pq$ tells us
$$ n=rs \; , \; \; o=tu \; , \; \; p=rt \; , \; \; q=su \; . \; \; $$
$$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $$
Alright, Brillhart writes an odd integer $N=a^2 + b^2 = c^2 + d^2,$ with odd $a,c$ and even $0<b<d. \; \;$
Then he writes $$ (a-c)(a+c) = (d-b) (d+b) $$ From our earlier calculation $no=pq$ we are setting $n=(a-c), \; o= (a+c), \; p= (d-b), \; q=(d+b) , $ all of which are even. The outcome was new letters $r,s,t,u$ with $ n=rs \; , \; \; o=tu \; , \; \; p=rt \; , \; \; q=su \; . \; \; $ Here $r = \gcd(a-c,d-b)$ is even, while $u = \gcd(a+c,d+b)$ is also even. Let me put these together,
$$(a-c)= rs, \; (a+c)= tu, \; (d-b)=rt, \; (d+b)=su $$
From the hypothesis $N=a^2 + b^2 = c^2 + d^2,$ we reach finally
$$ \left( \left( \frac{r}{2} \right)^2 + \left( \frac{u}{2} \right)^2 \right) (s^2 + t^2) $$
$$ = \frac{1}{4} \left( (rs)^2 + (rt)^2 + (su)^2 + (tu)^2 \right) $$
$$ = \frac{1}{4} \left( (a-c)^2 + (d-b)^2 + (d+b)^2 + (a+c)^2 \right) $$
$$ = \frac{1}{4} \left( 2a^2 + 2 b^2 + 2 c^2 + 2 d^2 \right) = N $$