Diagram below shows side and aerial views of upright and tilted martini glass.

For the upright glass, the shape of the martini liquid is an inverted right circular cone, with height $p\sin\theta$ and circular base of area $A_1$. Volume of martini is given by:
$$\begin{align}
V&=\frac 13\cdot A_1 \cdot p\cos\theta\\
&=\frac 13\cdot \pi (p\sin\theta)^2\cdot p\cos\theta\\
&=\frac 13\cdot \pi p\sin\theta\cdot \underbrace{\left(\frac 12 \cdot p^2\cdot \sin 2\theta\right)}_{\text{area of sideview cross-section}}
&&\cdots (1)
\end{align}$$
For the tilted glass, the shape of the martini liquid is an inverted ellipsoidal cone, with height $h$ and ellipse base with area $A_2$ and semi-major and semi-minor axes of $a$ and $b$ respectively. Volume of martini is given by:
$$\begin{align}
V&=\frac 13\cdot A_2 \cdot h\\
&=\frac 13\cdot \pi ab\cdot h\\
&=\frac 13 \cdot \pi b \cdot \underbrace{\left(\frac 12 \cdot 2a\cdot h\right)}_{\text{area of sideview cross-section}}\\
&=\frac 13 \cdot \pi b \cdot \underbrace{\left(\frac 12 \cdot q\cdot 1\cdot \sin 2\theta\right)}_{\text{area of sideview cross-section}}\\
\end{align}$$
Also, when glass is tilted, top surface of martini liquid changes from a circle to an ellipse, elongating along direction of tilt, with width remaining unchanged, i.e semi-minor axis of ellipse is equal to radius of original circle, or $b=p\sin\theta$. Hence
$$V=\frac 13 \cdot \pi p\sin\theta \cdot \left(\frac 12 \cdot q\cdot 1\cdot \sin 2\theta\right)\qquad\cdots (2)$$
Volume remains the same:
$(1)=(2)$ :
$$\begin{align}
\frac 13\cdot \pi p\sin\theta\cdot \left(\frac 12 \cdot p^2\cdot \sin 2\theta\right)
&=\frac 13 \cdot \pi p\sin\theta \cdot \left(\frac 12 \cdot q\cdot 1\cdot \sin 2\theta\right)\\
\underbrace{\frac 12 \cdot p^2\cdot \sin 2\theta}_{\text{area of upright sideview cross-section}}&=\underbrace{\frac 12 \cdot q\cdot 1\cdot \sin 2\theta}_{\text{area of tilted sideview cross-section}}\\\\
\color{red}{q}&\color{red}{=p^2}\qquad\blacksquare
\end{align}$$
The above also shows that the area of the sideview cross-section remains the same before and after tilting.
Special Note:
In the name of science and mathematics, I ordered myself a martini!
Pics shown below. Toothpick measures diameter of circle and minor axis of ellipse, and shows that they are both the same. Olive marks centre of circle/ellipse respectively.
Upright martini glass
Tilted martini glass
Edit
This section has been added to address the point raised by @DavidK about the assumption on the ellipse semi-minor axis.
Recap:
By equating volumes, we have
$$\begin{align}
V_\text{upright}&=V_\text{tilted}\\
\frac 13\cdot \pi (p\sin\theta)^2 \cdot (p\cos\theta)&=\frac 13\cdot \pi ab \cdot h\\
p\sin\theta\cdot \left(\frac 12\cdot 2p\sin\theta\cdot p\cos\theta\right)&=b\cdot \left(\frac 12 \cdot 2a\cdot h\right)\\
p\sin\theta\cdot \left(\frac 12 p^2 \sin 2\theta\right)&=b\cdot \left(\frac 12\cdot q\cdot 1\cdot \sin 2\theta\right)\\
p^3\sin\theta&=bq&&(1)
\end{align}$$
Now consider the side view of the tilted glass (see diagram below).

From the diagram it is clear that
$$\begin{align}
r&=\frac 12 (1+q)\sin\theta\\
d&=\frac 12 (1-q)\sin\theta\\
b&=\sqrt{r^2-d^2}\\
&=\sqrt {q} \sin\theta&&(2)
\end{align}$$
From $(1), (2)$,
$$\begin{align}
p^3\sin\theta&=\sqrt{q}\sin\theta\cdot q\\
&=q^{3/2}\sin\theta\\
\color{red}q&\color{red}{=p^2}\qquad\blacksquare\end{align}$$
Substuting the result in $(2)$ gives
$$b=p\sin\theta$$.
Additional Note:
From additional analysis it can be seen that, for a conical glass,
constant volume implies constant lateral width, i.e. $b=p\sin\theta$, and vice versa.