Let $(X,T)$ be a topological Hausdorff space. By $C_b(X)$ denote the continuous bounded function $f\colon X\to\mathbb{R}$, by $C_c(X)$ the continuous functions $f\colon X\to\mathbb{R}$ which have compact support $\text{supp}f=\overline{\left\{x\in X: f(x)\neq 0\right\}}$ and, finally, by $C_0(X)$ denote the continuous functions $f\colon X\to\mathbb{R}$ that vanish at infinity.
Show that the closure of $C_c(X)$ with respect to the Banachspace $(C_b(X),\lVert\cdot\rVert_{\infty})$ is $C_0(X)$, i.e. $$ \overline{C_c(X)}=C_0(X). $$
I think the inclusion "$\subseteq$" is the easier one.
Let $\varepsilon >0$ be arbitrary and let $(f_n)$ be a sequence in $C_c(X)$ that converges to $f$ w.r.t. to $\lVert\cdot\rVert_{\infty}$. This implies uniform convergence of $f_n$ to $f$. Hence, $f$ is continuous. Moreover, there exists some $N(\varepsilon)\in\mathbb{N}$ such that $$ \lvert f_n(x)-f(x)\rvert < \varepsilon~\forall n\geq N(\varepsilon) $$ for all $x\in X$. For all $x\notin\text{supp}f_{N(\varepsilon)}$, $f_{N(\varepsilon)}(x)=0$, hence $$ \lvert f(x)\rvert=\lvert f(x)-f_{N(\varepsilon)}\rvert <\varepsilon $$ for all $x\notin\text{supp}f_{N(\varepsilon)}$.
This means that $f\in C_0(X)$.
Now, I do not know exactly how to prove "$\supseteq$". I guess the general idea is the following. Let $f\in C_0(X)$. Now, construct a sequence $(\varphi_n)$ in $C_c(X)$ with $\varphi_n\to f$ w.r.t. the supremum norm $\lVert\cdot\rVert_{\infty}$.