Hint $\,\ \{a^{pq},a\} \equiv \{a^p,a^q\}\,$ both $\!\bmod p\,$ & $\bmod q,\,$ by little Fermat.
Hence $\, a^{pq}\!+\!a \ \equiv\ a^p\! + a^q\,$ mod $\,p,q,\,$ so also mod $\,pq = {\rm lcm}(p,q),\,$ by CCRT,
since addition $\,f(x,y)\, =\, x\! + \!y\,$ is $\rm\color{#c00}{symmetric}$ $f(\,x,y)= f(y,x),\,$ therefore its value depends only upon the (multi-)set $\{x,\,y\}.\,$
Generally if a polynomial $\,f\in\Bbb Z[x,y]\,$ is $\rm\color{#c00}{symmetric}$ then
$\qquad\qquad\quad\!\! \{A, B\} \equiv \{a,b\}\,\ {\rm mod}\,\ m\ \&\ n\ \Rightarrow\ f(A,B)\equiv f(a,b)\, \pmod{\!{\rm lcm}(m,n)}\qquad\quad$
a generalization of CCRT= constant-case optimization of CRT = Chinese Remainder, combined with a generalization of the Polynomial Congruence Rule to (symmetric) bivariate polynomials.