I was thinking about Paul Erdos's proof for Bertrand's Postulate and I wondered if the basic argument could be used to show that there are more than $n$ primes between $n$ and $n^2$.
Is this approach valid? Is there a better approach?
Here's the argument:
- Let $v_p(n)$ be the maximum power of $p$ that divides $n$.
- Using Legendre's Theorem, I calculate that $v_p\left(\dfrac{(n^2)!}{(n!)^n}\right) \le (n-1)n^2$.
- Let $n = qp^i + r$ where $0 \le r < p^i$
- For $r < \dfrac{p^i}{n}$, $\left(\left\lfloor\dfrac{n^2}{p^i}\right\rfloor - n\cdot\left\lfloor\dfrac{n}{p^i}\right\rfloor\right) = 0$
- For $r \ge \dfrac{p^i}{n}$, $\left(\left\lfloor\dfrac{n^2}{p^i}\right\rfloor - n\cdot\left\lfloor\dfrac{n}{p^i}\right\rfloor\right) \le n-1$
- For $p^i > n^2$, $\left(\left\lfloor\dfrac{n^2}{p^i}\right\rfloor - n\cdot\left\lfloor\dfrac{n}{p^i}\right\rfloor\right) = 0$
- Using the multinomial theorem I get: $\dfrac{n^{n^2}}{n^2+1} < \dfrac{(n^2)!}{(n!)^n}$.
- $n^{n^2}=(1 + 1 + \cdots + 1)^{n^2} = \sum\limits_{k_1+k_2+\cdots+k_n=n^2} {n^2 \choose k_1, k_2, \ldots, k_n} \prod\limits_{1\le t\le n^2}x_{t}^{k_{t}}\,,$ where ${n^2 \choose k_1, k_2, \ldots, k_n} = \frac{(n^2)!}{k_1!\, k_2! \cdots k_n!}$
- $n^{n^2} < (n^2+1)\left(\dfrac{(n^2)!}{(n!)^n}\right)$
- $\dfrac{n^{n^2}}{n^2+1} < \dfrac{(n^2)!}{(n!)^n}$
- $\dfrac{(n^2)!}{(n!)^n} < [(n-1)(n^2)]^n\prod\limits_{n < p \le n^2} n$
- $\dfrac{n^{n^2}}{n^2+1} < [(n-1)(n^2)]^n\prod\limits_{n < p \le n^2} n$
- For $n \ge 1, \dfrac{n^{n^2}}{n^{4n}} < \dfrac{n^{n^2}}{(n^2+1)[(n-1)(n^2)]^n} < \prod\limits_{n < p \le n^2} p$
- For $n \ge 6$, $n^2 - 4n = n(n-2) \ge 2n$
- $(2\log n)(\pi(n^2) - \pi(n)) > \sum\limits_{n < p \le n^2} \log p > (n^2-4n)\log n > (2n)\log n$
- So $\pi(n^2) - \pi(n) > n$.
Thanks,
-Larry
Edit: I believe that step 4 is not correct. If I can save the argument, I will update it. Otherwise, please check out the link in the answer.