I found a few different methods in efforts to finding possible simpler/intuitive solutions. They are still complicated, but all centered around the idea of finding a simple identity involving 3 elements and applying commutator iteratively.
Hopefully someone can double check these to make sure that I'm not producing some junk out of nowhere. I probably have burnt my brain after staring at all these anyways.
List of identities for easy dictionary:
\begin{align*}
&R_x: zxz^{-1} = x^2, && R_x': xz^{-1}x^{-1} = z^{-1}x, \\
&R_y: xyx^{-1} = y^2, && R_y': yx^{-1}y^{-1} = x^{-1}y, \\
&R_z: yzy^{-1} = z^2, && R_z': zy^{-1}z^{-1} = y^{-1}z.
\end{align*}
First Solution: Starting from $R_x$, our goal is to eliminate $x$ on RHS:
\begin{align*}
x^2
&= \underline{z}xz^{-1} & (R_z) \\
&= yzy^{-1}\underline{z^{-1}x}z^{-1} & (R_x') \\
&= yz\underline{y^{-1}x}z^{-1}x^{-1}z^{-1} & (R_y'^{-1}) \\
&= yzyx\underline{y^{-1}z^{-1}}x^{-1}z^{-1} & (R_z) \\
&= yzyxz^{-1}y^{-1}\underline{zx^{-1}z^{-1}} & (R_x) \\
&= yzy\underline{xz^{-1}}y^{-1}x^{-2} & (R_x) \\
&= yzyz^{-1}\underline{x^2y^{-1}x^{-2}} & (R_y^{-1}) \\
&= yz\underline{yz^{-1}y^{-4}} & (R_z) \\
&= \underline{yz^3y^{-3}} & (R_z) \\
&= z^6y^{-2},
\end{align*}
Here I underlined the part that we are operating with, with the relation in the parenthesis.
Then by symmetry, we have the following $3$ identities:
$$ x^2y^2 = z^6, \quad y^2z^2 = x^6, \quad z^2x^2 = y^6. $$
Next, one can easily check that, by applying $R_x$, we have $ z^2x^2 = x^8z^2 $. Hence, by this and the last two identities above, we can infer that
\begin{align*}
y^6 &= z^2x^2 = x^8z^2 = y^2z^2x^2z^2 \\
\Rightarrow y^4 &= z^2x^2z^2 = x^8z^4 = y^2z^2x^2z^4 \\
\Rightarrow y^2 &= z^2x^2z^4 = x^8z^6 = y^2z^2x^2z^6 \\
\Rightarrow x^2 &= z^{-8}.
\end{align*}
This and $R_x$ then implies that $ x = x^2 $ and we can conclude the proof by symmetry.
Second Solution: In Serge Lang's algebra, right before this result, he included the cocycle relation $$ [x, yz] = [x,y] \ {^y[x,z]}, $$ where $ {^a b} = aba^{-1} $ is the exponent notation for conjugation, making me suspicious of using this for the proof. I did find an easy solution, well, conceptually, through this approach:
Same dictionary as before:
\begin{align*}
&R_x: zxz^{-1} = x^2, && R_x': xz^{-1}x^{-1} = z^{-1}x, \\
&R_y: xyx^{-1} = y^2, && R_y': yx^{-1}y^{-1} = x^{-1}y, \\
&R_z: yzy^{-1} = z^2, && R_z': zy^{-1}z^{-1} = y^{-1}z.
\end{align*}
Interchanging the role of $x,y$, we have $$ [y,xz] = [y,x] \ {^x [y,z]}. $$ Then applying all the commutators (so that we don't end up with a trivial useless equation), we have
\begin{align*}
&LHS \stackrel{R_x}{=} [y,x^{-1}zx]
= yx^{-1}z\underline{xy^{-1}x^{-1}}z^{-1}x
\stackrel{R_y}{=} yx^{-1}\underline{zy^{-2}z^{-1}}x
\stackrel{R_z'}{=} yx^{-1}y^{-1}zy^{-1}zx \\
= &RHS \stackrel{R_y, R_z}{=} y^{-1}xzx^{-1} \stackrel{R_x^{-1}}{=} y^{-1}x^{-1}z.
\end{align*}
Then main observation is the following: Since we have exactly one $z$ in the above equation ignoring $x,y$, therefore, if we just routinely apply $R_y$, we should be able to write $z$ in terms of $x,y$ in a simple way. With this in mind, we can manipulate as follows:
\begin{align*}
&y^{-2}x^{-1}
= x^{-1}y^{-1}zy^{-1}\underline{zxz^{-1}}
\stackrel{R_x}{=} x^{-1}y^{-1}zy^{-1}x^2 \\
\Rightarrow \ &z
= y\underline{xy^{-2}x^{-1}}x^{-2}y
= y^{-3}x^{-2}y
= x^{-2}y^{-11}.
\end{align*}
Here we applied $R_y$ repetitively in the last line (conjugation of $y$ by $x$ doubles its exponent for quick mental calculation). Rewrite above result as $ zx = y^{-11} $ using $R_x$. Then the rest is easy: $$ z = y^{-11}x^{-1} = x^{-1}y^{-22} = x^{-1}zxzx = x^{-1}zx^3z = x^5 z^2,
$$
which implies that $z$ commutes with $x$ and completes that proof.
Third Solution: I probably have spent an unnecessary amount of time on this question, but I thought that exchanging $x,y$ does not make any sense, so I cooked up another solution without doing so.
Dictionary:
\begin{align*}
&R_x: zxz^{-1} = x^2, && R_x': xz^{-1}x^{-1} = z^{-1}x, \\
&R_y: xyx^{-1} = y^2, && R_y': yx^{-1}y^{-1} = x^{-1}y, \\
&R_z: yzy^{-1} = z^2, && R_z': zy^{-1}z^{-1} = y^{-1}z.
\end{align*}
Again, starting from the cocycle relation $$ [x, yz] = [x,y] \ {^y[x,z]}, $$ applying all $3$ commutators gives
\begin{align*}
RHS &= y\underline{yx^{-1}y^{-1}}
\stackrel{R_y'}{=} yx^{-1}y \\
= LHS &= [ x, z^2y ] = xz^2\underline{yx^{-1}y^{-1}}z^{-2} \\
&\stackrel{R_y'}{=} \underline{xz^2x^{-1}}yz^{-2} \\
&\stackrel{R_x'^{-1}}{=} x^{-1}zx^{-1}\underline{zyz^{-2}} \\
&\stackrel{R_z'^{-1}}{=} x^{-1}\underline{zx^{-1}z^{-1}}yz^{-1} \\
&\stackrel{R_x}{=} x^{-3}yz^{-1}.
\end{align*}
Isolating $z$ from the equation above then gives $$ z = y^{-1}\underline{xy^{-1}x^{-3}}y = \underline{y^{-3}x^{-2}}y = x^{-2}y^{-11}, $$ which is the same identity we got in the second solution.