from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
reg_svr = SVR(kernel='rbf')
reg_svr.fit(X_train_scaled, y_train)
test['prediction_svr'] = reg_svr.predict(X_test_scaled)
score_svr = np.sqrt(mean_squared_error(test['PJME_MW'], test['prediction_svr']))
print(f'RMSE Score on Test set (SVR): {score_svr:0.2f}')
Asked
Active
Viewed 85 times
0
Oxbowerce
- 8,522
- 2
- 10
- 26
Kshitija Thakur
- 1
- 1
1 Answers
0
There are several possibilities to speed up your SVM training. Follow the steps mentioned in the answer
and
Pluviophile
- 4,203
- 14
- 32
- 56