Some research paper define $\Sigma_i \text{SAT}$ in this way, $$\Sigma_i \text{QBF}=\left\{\enspace\substack{\exists x_1\forall x_2\exists x_3\cdots Q_ix_i\varphi(x_1\cdots x_i) \text{ where } \varphi(x_1\cdots x_i) \text{ is an unquantified boolean formula. } \\}\right\}$$
$\Sigma_i \text{SAT}=\{\text{true } \Sigma_i \text{QBF}\}.$
Another way to define(followed from Barak, Arora book),
$$\Sigma_i \text{SAT}=\left\{\enspace\substack{\phi(u_1\cdots u_i)|\phi(x_1\cdots x_n) \\ \text{ is a boolean formular with a partition of $x_1\cdots x_n$ into $u_1\cdots u_i$ such that } \\ \exists u_1\forall u_2\exists u_3\cdots Q_iu_i[\phi(u_1\cdots u_i)=1] \\}\right\}$$
For example $u_1$ could be $x_1x_2x_3$ and $u_2=x_2x_6$ etc.
can you explain with one example why and how both ways of definition of $\Sigma_i \text{SAT}$ is same or equivalent?