I'm looking for the complement definition of an access structure $AS$. I'm lost trying to find the complement of $AS$, $\overline{AS}$. Can someone explain what exactly is happening or provide a source for this?
$P = \{p_1,p_2,p_3,p_4 \}$
$AS =\{\{p_1,p_2,p_4 \}, \{p_1,p_3,p_4\}, \{p_2,p_3\}\}$
$\overline{AS} =\{\{p_1,p_2\}, \{p_1,p_3\}, \{p_1,p_4\}, \{p_2,p_4\}, \{p_3,p_4\}\}$
$t = |\overline{AS}| =5$